Repetition suppression in the medial temporal lobe and midbrain is altered by event overlap.
نویسندگان
چکیده
Repeated encounters with the same event typically lead to decreased activation in the medial temporal lobe (MTL) and dopaminergic midbrain, a phenomenon known as repetition suppression. In contrast, encountering an event that overlaps with prior experience leads to increased response in the same regions. Such increased responding is thought to reflect an associative novelty signal that promotes memory updating to resolve differences between current events and stored memories. Here, we married these ideas to test whether event overlap significantly modulates MTL and midbrain responses-even when events are repeated and expected-to promote memory updating through integration. While undergoing high-resolution functional MRI, participants were repeatedly presented with objects pairs, some of which overlapped with other, intervening pairs and some of which contained elements unique from other pairs. MTL and midbrain regions showed widespread repetition suppression for nonoverlapping pairs containing unique elements; however, the degree of repetition suppression was altered for overlapping pairs. Entorhinal cortex, perirhinal cortex (PRc), midbrain, and PRc-midbrain connectivity showed repetition-related increases across overlapping pairs. Notably, increased PRc activation for overlapping pairs tracked individual differences in the ability to reason about the relationships among pairs-our behavioral measure of memory integration. Within the hippocampus, activation increases across overlapping pairs were unique to CA1 , consistent with its hypothesized comparator function. These findings demonstrate that event overlap engages MTL and midbrain functions traditionally implicated in novelty processing, even when overlapping events themselves are repeated. Our findings further suggest that the MTL-midbrain response to event overlap may promote integration of new content into existing memories, leading to the formation of relational memory networks that span experiences. Moreover, the results inform theories about the division of labor within MTL, demonstrating that the role of PRc in episodic encoding extends beyond familiarity processing and item-level recognition. © 2016 Wiley Periodicals, Inc.
منابع مشابه
Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus.
Single-unit recording studies of monkeys have shown that neurons in perirhinal and entorhinal cortex exhibit activity reductions following stimulus repetition, and some have suggested that these "repetition suppression" effects may represent neural signals that support recognition memory. Critically, repetition suppression effects are most pronounced at short intervals between stimulus repetiti...
متن کاملTitle Neural Repetition Effects in the Medial Temporal Lobe Complex Are Modulated by Previous Encoding Experience Neural Repetition Effects in the Medial Temporal Lobe Complex Are Modulated by Previous Encoding Experience
It remains an intriguing question why the medial temporal lobe (MTL) can display either attenuation or enhancement of neural activity following repetition of previously studied items. To isolate the role of encoding experience itself, we assessed neural repetition effects in the absence of any ongoing task demand or intentional orientation to retrieve. Experiment 1 showed that the hippocampus a...
متن کاملO7: Limbic System and its Disorders (Focus on Emotions Including Anxiety)
The cerebral cortex can be functionally subdivided into primary sensory-motor, unimodal association, heteromodal association, paralimbic and limbic regions. Broca was the first who described limbic lobe in 1874, as a ring of gray matter, lying between the diencephalon and more lateral neocortex on the medial surface of the hemisphers. It locates outside of the corpus callosum and consists of su...
متن کاملOp-scan130035 712..722
In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal–parietal–temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this netw...
متن کاملRepetition-related reductions in neural activity reveal component processes of mental simulation.
In everyday life, people adaptively prepare for the future by simulating dynamic events about impending interactions with people, objects and locations. Previous research has consistently demonstrated that a distributed network of frontal-parietal-temporal brain regions supports this ubiquitous mental activity. Nonetheless, little is known about the manner in which specific regions of this netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hippocampus
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2016